Timeline of abelian varieties
This is a timeline of the theory of abelian varieties in algebraic geometry, including elliptic curves.
Early history
Seventeenth century
- Fermat studies descent for elliptic curves
- 1643 Fermat poses an elliptic curve Diophantine equation[2]
- 1670 Fermat's son published his Diophantus with notes
Eighteenth century
Nineteenth century
- 1826 Niels Henrik Abel, Abel-Jacobi map
- 1827 inversion of elliptic integrals independently by Abel and Carl Gustav Jacob Jacobi
- 1829 Jacobi, Fundamenta nova theoriae functionum ellipticarum, introduces four theta functions of one variable
- 1835 Jacobi points out the use of the group law for diophantine geometry, in Du usu Theoriae Integralium Ellipticorum et Integralium Abelianorum in Analysi Diophantea[9]
- 1836-7 Friedrich Julius Richelot, the Richelot isogeny.[10]
- 1847 Adolph Göpel gives the equation of the Kummer surface[11]
- 1851 Johann Georg Rosenhain writes a prize essay on the inversion problem in genus 2.[12]
- c. 1850 Thomas Weddle - Weddle surface
- 1856 Weierstrass elliptic functions
- 1857 Bernhard Riemann[13] lays the foundations for further work on abelian varieties in dimension > 1, introducing the Riemann bilinear relations and Riemann theta function.
- 1865 Carl Johannes Thomae, Theorie der ultraelliptischen Funktionen und Integrale erster und zweiter Ordnung[14]
- 1866, Alfred Clebsch and Paul Gordan, Theorie der Abel'schen Functionen
- 1869 Weierstrass proves an abelian function satisfies an algebraic addition theorem
- 1879, Charles Auguste Briot, Théorie des fonctions abéliennes
- 1880 In a letter to Richard Dedekind, Leopold Kronecker describes his Jugendtraum,[15] to use complex multiplication theory to generate abelian extensions of imaginary quadratic fields
- 1884 Sofia Kovalevskaya writes on the reduction of abelian functions to elliptic functions[16]
- 1888 Friedrich Schottky finds a non-trivial condition on the theta constants for curves of genus g = 4, launching the Schottky problem.
- 1891 Appell–Humbert theorem of Paul Émile Appell and Georges Humbert, classifies the holomorphic line bundles on an abelian surface by cocycle data.
- 1894 Die Entwicklung der Theorie der algebräischen Functionen in älterer und neuerer Zeit, report by Alexander von Brill and Max Noether
- 1895 Wilhelm Wirtinger, Untersuchungen über Thetafunktionen, studies Prym varieties
- 1897 H. F. Baker, Abelian Functions: Abel's Theorem and the Allied Theory of Theta Functions
Twentieth century
Twenty-first century
Notes
- ^ PDF
- ^ Miscellaneous Diophantine Equations at MathPages
- ^ Fagnano_Giulio biography
- ^ E. T. Whittaker, A Treatise on the Analytical Dynamics of Particles and Rigid Bodies (fourth edition 1937), p. 72.
- ^ André Weil, Number Theory: An approach through history (1984), p. 1.
- ^ Landen biography
- ^ Chronology of the Life of Carl F. Gauss
- ^ Semen Grigorʹevich Gindikin, Tales of Physicists and Mathematicians (1988 translation), p. 143.
- ^ Dale Husemoller, Elliptic Curves.
- ^ Richelot, Essai sur une méthode générale pour déterminer les valeurs des intégrales ultra-elliptiques, fondée sur des transformations remarquables de ces transcendantes, C. R. Acad. Sci. Paris. 2 (1836), 622-627; De transformatione integralium Abelianorum primi ordinis commentatio, J. Reine Angew. Math. 16 (1837), 221-341.
- ^ Gopel biography
- ^ http://www.gap-system.org/~history/Biographies/Rosenhain.html
- ^ Theorie der Abel'schen Funktionen, J. Reine Angew. Math. 54 (1857), 115-180
- ^ http://www.gap-system.org/~history/Biographies/Thomae.html
- ^ Robert Langlands, Some Contemporary Problems with Origins in the Jugendtraum
- ^ Über die Reduction einer bestimmten Klasse Abel'scher Integrale Ranges auf elliptische Integrale, Acta Math. 4, 392–414 (1884).
- ^ PDF, p. 168.
- ^ Ruggiero Torelli, Sulle varietà di Jacobi, Rend. della R. Acc. Nazionale dei Lincei , (5), 22, 1913, 98–103.
- ^ G. Scorza, Intorno alla teoria generale delle matrici di Riemann e ad alcune sue applicazioni,Rend. del Circolo Mat. di Palermo 41 (1916)
- ^ C. L. Siegel, Einführung in die Theorie der Modulfunktionen n-ten Grades, Math. Ann. 116 (1939), 617–657
- ^ Jean-Pierre Serre and John Tate, Good Reduction of Abelian Varieties, The Annals of Mathematics, Second Series, Vol. 88, No. 3 (Nov., 1968), pp. 492–517.
- ^ Daniel Huybrechts, Fourier–Mukai transforms in algebraic geometry (2006), Ch. 9.
- ^ J.-M. Fontaine, Il n'y a pas de variété abélienne sur Z, Invent. Math. (1985) no. 3, 515–538.